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The problem of the motion of a dynamically symmetrical heavy body with a fixed point and an axially symmetrical cavity completely 
filled with a fluid is considered taking account of internal friction. All the permanent rotations of the system are found and their 
stability and branching are investigated. The results are presented in the form of an atlas of bifurcation diagrams. © 2005 Elsevier 
Ltd. All rights reserved. 

Basic results in the dynamics of a rigid body with cavities containing a fluid have been described in [1]. 
A phenomenological model of internal viscous friction was proposed in [2] and this model was tested 
in linear problems of the description of small oscillations in the neighbourhood of uniform rotations 
of a system around a vertically situated axis of symmetry. This model is used below to construct 
bifurcation diagrams of the steady motions of a symmetrical heavy body with a viscous filler (a non- 
linear problem) which, together with the above-mentioned motions, includes uniform rotations around 
the vertical when the axis of symmetry of the body is in an inclined position. 

1. T H E  E Q U A T I O N S  O F  M O T I O N  

Consider the problem of the motion of a heavy rigid body with a fixed point and a cavity which is 
completely filled with a homogeneous fluid. We will assume that the body is dynamically symmetrical 
and that the cavity is an ellipsoid of revolution, the axis of symmetry of which coincides with the axis 
of dynamic symmetry of the body on which the centre of mass of the body is located. In addition, we 
will assume that the fluid executes simple [1, 2] motion and that friction occurs when the fluid interacts 
with the walls of the cavity, which depends linearly on the difference between the angular velocity of 
the body and half the vortex vector of the fluid. 

The equations of motion of the body-fluid system have the form (compare with the model considered 
earlier in [2]) 

Ad} + B~ + [~, (A~ + B~)]  = [~/, 3V/Dg] (1.1) 

B ~  + [(oJ + t~), C ~ ]  = O ( ~  - !~)  (1.1) 

+ "t] = 0 (1 .3 )  

fPrikl. Mat. Mekh. Vol. 68, No. 6, pp. 994-998, 2004. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2004.11.011 



894 A.V. Karapetyan e t a  l. 

Here 

A = J + J *  = diag(Al, A p A 3 ) ,  B = l - J *  = d iag(BpB1,  B3) 

C = diag(B l, B l, 482(1 + ~2)-1B3), D = diag(D 1, D1, D3),  ~ = al/a 3 

J diag(J1, J1, J3), J* diag(J~, * * = = J l ,  J3 ), I = diag(l 1, I l, 13) 

to is the angular velocity, ~ is half the vortex vector, ~/is the unit vector of the ascending vertical, 
V = mgsy3 is the potential energy of the system (m is the mass of the whole system, g is the acceleration 
due to gravity, s is the distance from the fixed point to the centre of mass of the system), J is the inertia 
tensor of the rigid body for a fixed point referred to the principal axes of inertia of the body, J* is the 
inertia tensor of an equivalent body (al ,  a2 = al and a3 are the semi-axes of the cavity) and I is the 
central inertia tensor of the fluid, referred to the principal axes of the cavity. 

The tensorA is the sum of the inertia tensor of the body and the tensor of the equivalent body. Tensor 
B is the difference between the inertia tensor of the body and the tensor of the equivalent body, tensor 
C is of an auxiliary nature and tensor D characterizes the intensity of the internal friction ((Du, u) > 0, 
Vu ~ 0). If the mass of the body is denoted by m~ and the mass of the fluid is denoted by m(1 - 8), 
where a s (0, 1), then 

J1 =m(~(P~+s2), J3 =msP~,  J~-rn(5-e)a32(1-82)2--  J* = 0  
1 + 8  2 ' 

2m(1 - ~) 2~2 
i1 = m(15-a,)a~(l+~2), 13 _ 5 a3° 

(Pl,  P2 = Pl and P3 are the central radii of inertia of the body). 
Equations (1.1) express the change in the angular momentum of the system, Eqs (1.2) describe the 

evolution of the vortex vector and Eqs (1.3) denote the constancy of the vector ~, in the absolute frame 
of reference. 

The system of equations (1.1)-(1.3) has been investigated by Thomson, Poincar6, Zhukovskii and 
others in the case when D = 0 (see the detailed bibliography in [1, 3] and the All-Union Institute for 
Scientific and Technical Information (VINITI) reviews). 

2. T H E  E F F E C T I V E  P O T E N T I A L  

It follows from the system of equations (1.1)-(1.3) that 

d H  d K  
= - ( D ( ( o - ¢ l ) ,  ( ( o - ~ ) )  5 0 ,  - -  = 0 

dt  dt  

where H is the total mechanical energy of the system, and K is the projection of the angular momentum 
of the system onto the vertical 

1 0))  + ( B ~ ,  EL)] + V,  K ( ( a o  + BI~) ,  ~) H = ~[(A~, = 

The system being considered therefore allows of a non-increasing function H and a first integral 
K = k = const. 

We find the effective potential [4] of the system as the minimum of the function H with respect to 
the variables to and ~ for a fixed level of the integral K = k. For this purpose we consider the function 
F = H - )~(K- k), where • is an undetermined Lagrange multiplier and we write out the conditions for 
its stationarity with respect to the variables o3, f l  and ~, 

OF _ _  = OF = B( a - ) L¥ )  = 0, = k - K  = 0 (2.1) OF a(o) - )~"/) = 0, ~-~ ~-~ 
0(o 

The relations to = )~3' and ~ = E~/follow from the first two equations of system (2.1), and, on 
substituting these into the last equation of this system, we find that 

2 2 2 
9~ = k iP(y) ,  P("/) = P1(Tl +]'z) + P3~/3; P1 = A1 + B1, P3 = A3 + B3 
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Hence, a minimum of the function H at the level K = k is attained when 

k k 
, o  = 

and is equal to 

(2.2) 

k 2 
W k ( ~ l )  = rags]t3 + 2P(T'----~ (2.3) 

According to Routh's theory, the steady motions of the system 

k k 
o) = e,,io)~O,~ g~ = p,¥0,70,~ ) ¥ = "/0 (2.4) 

correspond to the critical points ~/ = 3'0 of the function Wk(~/) on the Poisson sphere ~/2 = 1. These 
steady motions are obviously permanent rotations of the system as a rigid body (to = f~) about a vertical, 
while the stable steady motions correspond to minimum points. 

We will show that the function H decreases for all motions which differ from the steady motions (2.4). 
Actually, dH/dt - 0 if and only if to --- ~ ;  in this case (see 1.2)) ~ - 0, that is, & = 0. Hence, 3'3 - 0 (see 
the expression for the function H)  and @1 - ~2 = 0 (see the projection of Eq (1.1) onto the two first 
principal axes of inertia of the body). Consequently, the partially asymptotically stable motions 
correspond to the minima of the effective potential and the unstable motions correspond to the other 
critical points. In the first case, partial asymptotic stability means that the perturbed motion tends to 
a permanent rotation (but not necessarily to unperturbed motion). 

3 .  S T A B I L I T Y  OF T H E  T R I V I A L  S T E A D Y  M O T I O N S  

In order to investigate the critical points of the effective potential on the Poisson sphere, we reduce it 
to the form 

2 k 2 K 2 P1 
2 ; K = ~ ,  P = ~33 W~ = mgsf(Y3), f(T3) = T3 + 2[y~ + p(1 -Y3)] mgsP3 

It is obvious that the function f(73 ) is defined in the interval 73 ~ [-1, 1] and always has the critical points 
73 = -1 and 73 = 1. The trivial uniform rotations around the vertically positioned axis of symmetry 
correspond to these points: 

"~1 = '~ 2 = O, 0)1 = 0)2 = O, ~'21 = ~-~2 = O, 'Y 3 = --1,  0)3 = ~ 3  = 0) = - k / P 3  (3.1) 

"~1 = "~2 = O, 0)1 = (02 = O, ~dl = ~'~2 = O, ~13 = 1, 033 = ~d 3 = O0 = k / P  3 (3.2) 

in the case of the lowest position (3.1) or highest position (3.2) of the centre of mass. 
The first rotations are stable (unstable) if f ( - 1 )  > 0 (<0) and the second rotations are stable (unstable) 

if f ( 1 )  < 0 (>0).  On calculat ingf = dr~d73, we have 

f '  = 1 -  
I¢2( 1 - P)'Y3 

The conditions for the stability (instability) of the uniform rotations (3.1) and (3.2) therefore, 
respectively, have the form 

1 + ~:z(1 - p) > 0 (< 0), l - ~ 2 ( l - p ) < 0  (>0)  

o r  

m g s + ( A  3 + B  3 - A  t -B1)0)  2 > 0 ( < 0 )  

m g s - ( A  3 + B  3 - A  l -B1)0)  2 < 0 ( > 0 )  

(3.3) 

(3.4) 
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Fig. 1 

Consequently, the uniform rotations (3.1) are always stable (see (3.3) whenA3 + B 3 > A1 + B1 (that 
is, whenp  < 1) and the uniform rotations (3.2) are always unstable (see (3.4)) whenp  > 1. 

W h e n p  > 1, the uniform rotations (3.1) are stable when n z < ~. (0)2 < 0)2) and, whenp  < 1, the 
uniform rotations (3.2) are stable when ~:2 > ~. (032 > 0)2). Here 

2 
2 p 

~* = I I - p l '  
2 = rags 

03* IA 3 + B 3 - A 1 - BI] 

Hence, whenp  > 1 (p < 1) a change occurs in the stability of the uniform rotations (3.1) ((3.2)) and 
"skew" (~3 ~ 1, that is, ~ + ~ ¢ 0) permanent  rotations must branch off from them. 

It can be seen that conditions (3.3) and (3.4) do not contain elements of the tensor D. This fact 
correlates fully with the result obtained by Rumyantsev [1]: the conditions for the stability of the 
permanent rotation of a body with a viscous filler when there is no external dissipation do not contain 
the coefficient of viscosity of the filler. This property is explained by the fact that conditions (3.3) and 
(3.4) separate out the domains of"secular stability". In the case when D = 0, the domain of"gyroscopic 
stabilization", which is known to be destroyed in the case of dissipative forces which may be as small 
as desired, can be added to this domain. 

The magnitude of the viscosity affects the rate of the transients, to estimate which system (1.1)-(1.3) 
can be used. 

4. B R A N C H I N G  OF S T E A D Y  M O T I O N S  

In order to find the "skew" permanent rotations, we consider the equat ionf  = 0 from which the internal 
(73 e (-1, 1)) critical points of the effective potential are determined and we represent it in the form 

2 
2 [73 + P(I - 7~)] 2 

= (1 - P)73 = cP(73) (4.1) 

It is obvious that Eq. (4.1) whenp  > 1 can only have negative roots (73 ~ (-1, 0)) and, whenp  < 1, 
it can only have positive roots (73 e (0, 1)). Note that this equation is identical, apart from the notation, 
with the equation from which the "skew" steady motions of a physical pendulum, suspended from a 
horizontal axis which can freely rotate about a vertical (see [4, 5]), are determined. Analysis of the function 
q0(73) (see also [4, 5]) shows that, whenp  > 1 and 3/4 < p < 1, this function is monotonic and, when 

p ~ (0, 3/4), there is just a single extremal point: 73 = ~[p/(3(p - 1)). Hence, all the critical points of 
the function f(73 ) can be represented in the form of thecurves 73 = 73(k2) in the (k2; 73) plane. Here 
we must distinguish three cases: (a)p > 1, (b) 3/4 < p  < i and (c) 0 < p  < 3/4. These curves are shown 
in Fig. 1, where 

2 

k.2 = m g s P 3 ~ p  PI' k**2 = k.3~/~2 4 

Stable (unstable) permanent rotations are labelled with plus (minus) signs, and conclusions concerning 
the stability or instability of the "skew" permanent  rotations (73 ~ +__1) are drawn on the basis of the 
theory of bifurcations [4, 5]. 



The stability and branching of the permanent rotations of a rigid body with a fluid filling 897 

5. E X A M P L E S  

As an example, we will consider  the case of  a heavy thin-walled spheroid filled with a fluid and clamped 
at a vertex lying on its axis of  symmetry.  In this case, 

2 2 
ma3 2 ma3 

s = a3, A 1 = --~--13(1 +82)+rna3  g = --~--13(4+82) 

. ~  4 2 8 2 2 2 
A 3 = 13282 , B 1 = ~rna3(1-13) B 3 = ~ m a 3 ( 1 - 1 3 ) 8 2  

1 + 8  2, 

H e n c e ,  

1282 + 13(584 + 1382 + 20) 

P = 2~2(1 + 82)(3 + 2e) 

and, if 8 2 < i (the prolate spheroid), thenp  > 1 for any 13 s (0, 1) (that is, for any ratio of the mass of 
the shell to the mass of the whole system). If, however, 82 > 1, t henp  <> 1 when 13 <> 131 andp  <> 3/4 
when 13 <> 132, where 

682(82 - 1 ) 3 ~2(3~2 - 5) 
~1 = E2 = 

(132 + 4)(82 + 5) '  484 + 582 + 10 

(it is obvious that e2 < 0 if 8 2 <~ 5/3). 
Consequently, if the cavity is a prolate spheroid (al < a3), then, for any ratio of the mass of the shell 

to the mass of the whole system, the bifurcation diagram has the form shown in Fig. l(a). If, however, 
the cavity is an oblate spheroid (al > a3), the form of the bifurcation diagram depends on the cavity 
aspect ratio and on the ratio of the mass of the shell to the mass of the whole system: if the cavity is 
not very strongly oblate (1 < alia 3 < ~ / ~ ) ,  the bifurcation diagram has the form shown in Fig. l(a) 
when 13 > 131 (the shell is fairly heavy) or in Fig. l(b) when e < 131 (the shell is quite light). If, however, 
the cavity is strongly oblate (al ia 3 > ~]5/3), the bifurcation diagram has the form shown in Fig. l(a) 
when 13 > 131, in Fig. l(b) when 13 e (132, 131) and in Fig. l(c) when 13 < 132. 

In particular, in the case of an almost weightless shell (13 = +0), the bifurcation diagram has the form 
a, b or c when 82 < 1, 1 < 82 < 5/3, or 82 > 5/3 respectively. If, however, the fluid is very light (13 = 
1 - 0), then the bifurcation diagram has the form a, b or c when 82 < 4, 4 < 62 < 8 or 82 > 8 respectively. 
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